18+


Всемирные новости и новости шоу-бизнеса | News-w.org | World news and Showbiz news » Москва » В МТУСИ разрабатывают систему для автоматического создания персонализированных плейлистов

02 апрель 2024, Вторник
3
0
В МТУСИ разрабатывают систему для автоматического создания персонализированных плейлистовС увеличением объема информации в интернете пользователю сложно найти нужные данные, поэтому все больше набирают популярность системы рекомендаций товаров, видеозаписей, кинокартин и музыкальных файлов. Разработчики крупных компании тратят огромные деньги на разработку, доработку и настройку алгоритмов и иных сервисов по подбору предложений.

Нейросети эффективно применяются в разных областях, включая обработку изображений и анализ музыкальных предпочтений. Популярными становятся алгоритмы создания «умных плейлистов» с помощью искусственного интеллекта. Однако существующие сервисы не всегда могут удовлетворить все потребности пользователей, например, из-за ограничений доступа или неустойчивого интернет-соединения.

Над решением проблемы работают магистранты факультета РиТ Антон Шманев и Марина Михайлова под руководством доцента кафедры «Телевидение и звуковое вещание» МТУСИ Семена Литвина, которые разрабатывают рекомендательную систему для создания персонализированных плейлистов.

«Разрабатываемый алгоритм системы базируется на нейросети, использующей цепи Маркова, и адаптивно реагирует на изменения, вносимые пользователем в ходе прослушивания. В процессе принятия решения учитываются субъективные психоакустические критерии и психологический настрой слушателя. Анализ статистики помогает выявить общие тенденции, связанные с различными факторами, такими как возраст, пол, образование, профессия и место проживания слушателя. Частота переходов между композициями представляется вероятностью, по которой рекомендуются композиции и формируются плейлисты», — пояснил Антон Шманев.

Помимо рекомендаций по выбору композиций из списка, когда-то ранее уже прослушанных пользователем, алгоритм предлагает новые дополнительные треки из состава малопрослушиваемых до этого. Алгоритм использует построение «пути/цепи», где персептроны определяют, на что пользователь ориентируется в выборе музыки в данный момент, предлагая композиции в соответствии с оцененной вероятностью прослушивания.

Ключевым отличием разрабатываемой системы от имеющихся является оперирование с фонотекой аудиозаписей пользователя без постоянного выхода в Интернет, что дает возможность слушателю использовать высококачественные и редкие аудиоматериалы своей фонотеки.

При разработке алгоритма учтены обновление правил генерации плейлистов в зависимости от отзывов пользователей и его прошлой активности, что позволяет улучшить процесс подбора фонограмм и предоставить персонализированный плейлист, соответствующий вкусам и предпочтениям пользователя.

Предложенный алгоритм работы, основанный на прямом взаимодействии с обучаемой системой, способен удовлетворить большую часть потребностей среднестатистического слушателя в подборе музыки. Разрабатываемая система с базовой схемой алгоритма обладает большим потенциалом и гибкостью для масштабируемых рекомендательных систем и может применятся на различных вычислительных устройствах.

В перспективе разрабатываемая система может быть расширена до работы с многоканальными аудиосигналами. Разработчики в дальнейшем планируют дополнить вектор типовых параметров фонограмм параметрами огибающей сигнала ADSR и параметром, характеризующим внутреннюю ритмическую структуры сигнала, что позволит более точно прогнозировать музыкальные предпочтения слушателя.

Материал: News-w.org / Наталья Берладян по материалам пресс-службы
Обсудить

Читайте также:

Добавить комментарий
Комментарии (0)